
Prepared For: Lyra

Prepared By: Sherlock

Lead Security Experts: Gerhard Wagner, 0xRajeev

Security Researchers: Riley Holterhus, Mukesh Jaiswal, 0xAsm0d3us,

Secureum Bootcamp participants

Prepared On: June 27th, 2022

https://twitter.com/g3rh4rdw4gn3r
https://twitter.com/0xRajeev
https://twitter.com/rileyholterhus
https://twitter.com/MukeshJ_eth
http://twitter.com/TheSecureum

Introduction
“Lyra is an options trading protocol accessing the scalability of Layer 2 Ethereum to
provide a robust, lightning-fast and reliable trading experience.”

This report is a CASEfile for Lyra Protocol that was prepared by Sherlock Watsons
Gerhard Wagner and 0xRajeev, with assistance from Riley Holterhus, Mukesh
Jaiswal, 0xAsm0d3us and Secureum participants, in the context of Secureum CASE
(Collaborative Assessment & Security Evaluation) during 5-18 May, 2022.

Scope
Branch: Avalon (https://github.com/lyra-finance/lyra-protocol/tree/avalon)
Commit: 6635f6005f68d46dfe60b92e34f372851c536bfd
(https://github.com/lyra-finance/lyra-protocol/pull/2/commits/6635f6005f68d46dfe60
b92e34f372851c536bfd)
Contracts:

● LiquidityPool.sol
● OptionMarket.sol
● PoolHedger.sol
● LiquidityTokens.sol
● OptionMarketPricer.sol
● ShortCollateral.sol
● OptionGreekCache.sol
● OptionToken.sol
● SynthetixAdapter.sol
● synthetix/AbstractOwned.sol
● synthetix/DecimalMath.sol
● synthetix/Owned.sol
● synthetix/OwnedUpgradeable.sol
● synthetix/SignedDecimalMath.sol
● lib/BlackScholes.sol
● lib/FixedPointMathLib.sol
● lib/GWAV.sol
● lib/SimpleInitializeable.sol
● periphery/Wrapper/BasicOptionMarketWrapper.sol
● periphery/Wrapper/OptionMarketWrapper.sol
● periphery/Wrapper/OptionMarketWrapperWithSwaps.sol

For this review, it’s also worth noting that the Synthetix components were out of
scope. And the keeper mechanism along with incentives to keep the protocol state
updated were not reviewed.

https://www.lyra.finance/
https://twitter.com/g3rh4rdw4gn3r
https://twitter.com/0xRajeev
https://twitter.com/rileyholterhus
https://twitter.com/MukeshJ_eth
https://twitter.com/MukeshJ_eth
http://twitter.com/TheSecureum
https://github.com/lyra-finance/lyra-protocol/tree/avalon

Code Attributes
Code Complexity: Solidity Metrics report

Test Suite
Test coverage: Very good
Quality of tests: The quality of tests were high, although it is recommended that the
protocol team extend the test suite to look for edge cases or unusual situations that
might reveal flaws in economic assumptions and/or implementation.

Blockchain: Ethereum
L2s: Optimism

Tokens used: sUSD, Synthetix Synths

Findings

Each issue has an assigned severity:

● Informational issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their own
judgement as to whether to address such issues.

● Low issues are objective in nature but are not security vulnerabilities. These
should be addressed unless there is a clear reason not to.

● Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

● High issues are directly exploitable security vulnerabilities that need to be fixed.

Total Issues

Informational Low Medium High

9 24 9 0

https://siasky.net/_A08iFoHLu2Dlbpo26RE0ZtURBRPLU6bmZwAWy4HJiCy2w

Issue M-01

Failing withdrawals could permanently freeze the queue

Summary
Withdrawals are done in a two-step process. First, a user starts the withdrawal and if
the initial validation succeeds, the withdrawal is added to queuedWithdrawals. After a
withdrawal delay, a user can then call processWithdrawalQueue. This function does
not allow a user to process the withdrawal based on an id but processes withdrawals
in chronological order. So if a user wants to withdraw funds, all other withdrawals that
were initiated before need to be processed first. This can be problematic if one of the
withdrawals fails for an unforeseen reason because then, the withdrawal queue is
stuck and no other withdrawals after the failing one can take place.

Deposits have the same two-step process and the design of the queue could lead to a
similar issue where a processing failure for a deposit could freeze the deposit queue.

Severity
Medium

Vulnerability Detail
The withdrawal queue returns without processing the withdrawal if
totalTokensBurnable is 0. The withdrawal can not be processed until the condition
changes. There could be other undiscovered issues that might cause failures or
reverts, in which case the withdrawal queue could become stuck as well.

Impact
The withdrawal queue could become permanently stuck and users will not be able to
withdraw their funds anymore from the LiquidityPool contract. This will cause a DoS.

Code Snippet
processWithdrawalQueue

Tool used
Manual Review

Recommendation
It is recommended to change the design of the deposit and withdrawal process so that
funds can be processed without a queue. Users should be able to process their
deposits or withdrawals regardless of a specific order.

Lyra Comment
A queue is necessary due to the potential of the pool filling up blocking withdrawals. In
those scenarios, those who came first should be able to withdraw their funds first.
We've endeavoured to make sure that the queue processing is as robust as possible.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L335-L337

In the case of some failings in circuit breakers etc. the guardian has the ability to
process the queue.

Sherlock Comment
Sounds reasonable.

Issue M-02

Uninitialized Strike is allowed to be used

Summary
A Strike can either be added when a board is added with createOptionBoard or later
on with addStrikeToBoard. When a Strike is initialized, its id is derived from the
nextStrikeId variable, which is incremented by one for every Strike that is added.
nextStrikeId is set to 1 when the OptionMarket is created. Strike ids are checked for
their validity by comparing Strike.id with the id from the user input that is used to
retrieve the struct from the ​​strikes mapping. This check is insufficient for Strike id 0
because, by default, Strike.id is 0, so the check can be bypassed and the Strike is valid
even though it is uninitialized.

Severity
Medium

Vulnerability Detail
The code in _composeTrade performs checks to make sure it only uses a valid Strike.
An invalid Strike can be submitted, though with the id 0. The data structure has not
been initialized as the nextStrikeId starts at 1. So using the id 0 bypasses the check
and then composes TradeParameters based on the uninitialized Strike and
subsequently OptionBoard. While during testing, it was not possible to create a
position with the uninitialized Strike it might be possible under certain circumstances.

The setStrikeSkew function has a similar issue and the Strike id 0 is not rejected.

Impact
The owner could accidentally call setStrikeSkew with id 0. With the strike skew set, it
might be possible to create or update a position with invalid Strike values.

Code Snippet
_composeTrade setStrikeSkew

Tool used
Manual Review

Recommendation
Set nextStrikeId to 0 instead of 1 at contract creation, or add an explicit check to make
sure strikeId 0 is considered invalid and rejected in all the functions listed in the Code
Snippet section.

Lyra Comment

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L613-L636
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L285-L302

Checks have been added to ensure strikeId/boardId of 0 cannot be modified even by
admins.

Sherlock Comment
Looks reasonable.

Issue M-03

Accurate price at board expiry is not ensured

Summary
The expiration date for a board can be set by settleExpiredBoard function. It queries
the spot price from the Synthetix contracts and sets the boardToPriceAtExpiry
assuming the price is close to the expiration time. There is no on-chain mechanism
currently to ensure that this is the case. The team has indicated that they will initially
take on the responsibility of calling the function at board expiration and that they will
implement a mechanism to incentivize users (i.e. keepers) to call the function.

Severity
Medium

Vulnerability Detail
N/A

Impact
If no one calls settleExpiredBoard function at board expiration and it’s only later called
after a longer period has been passed, then it is possible that the current spot price
deviates significantly from the one at board expiration. The settlement of the expired
board could lead to financial loss for some users.

Code Snippet
settleExpiredBoard

Tool used
Manual Review

Recommendation
It is recommended to implement an on-chain mechanism that ensures that the
boardToPriceAtExpiry is always accurate and as close to the expiration time as
possible.

Lyra Comment
Keepers will be run to ensure this function is called as soon as possible after expiry.
This feature can be added in the future, there is no simple way to get this data
on-chain. In the case of an outage, there most likely will not be a chainlink feed that
can be read from to get accurate data.

Sherlock Comment
Sounds reasonable.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L915-L924

Issue M-04

Updating BoardCachedGreeks does not check if a board is expired

Summary
A function in the OptionGreekCache contract that updates the cached greeks for an
OptionBoardCache misses expiration checks for the board.

Severity
Medium

Vulnerability Detail
The _updateBoardCachedGreeks function only checks if the board id is 0 but misses a
check if the board is expired.

Impact
Various parameters of the GlobalCache and the OptionBoardCache can be updated
based on the expired board values.

Code Snippet
updateBoardCachedGreeks _updateBoardCachedGreeks

Tool used
Manual Review

Recommendation
Include a check that ensures that a board has not expired before the greeks of the
OptionBoardCache are updated.

Lyra Comment
This has been resolved.

https://github.com/lyra-finance/lyra-protocol/blob/avalon/contracts/OptionGreekCach
e.sol#L727-L729

Sherlock Comment
Looks reasonable.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L696-L698
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L706-L749

Issue M-05

Interchanged from-to addresses cause loss of user funds

Summary
The from and to addresses are interchanged in _returnBase and _returnQuote leading
to an excess amount of base/quote asset in the contract being transferred again from
the user (to contract) instead of being sent back to the user (from the contract).

Severity
Medium

Vulnerability Detail
When a user closes or force closes their position via OptionMarketWrapperWithSwaps,
the user's excess base assets in the contract are expected to be sent back to the user
via a call to _returnBase. However, when _returnBase makes a call to _transferAsset, it
incorrectly uses msg.sender as the from address and address(this) as the to address,
instead of the other way around.

A similar issue exists in _returnQuote, which affects both the opening and closing of
positions.

Impact
This leads to the loss of user funds whose excess quote/base asset while
opening/closing a position is transferred again from the user to the contract leading to
twice the amount of the user's initial excess base asset getting stuck in the contract.

Code Snippet
_returnBase _returnQuote _transferAsset _closePosition _openPosition

Tool used
Manual review

Recommendation
Use _transferAsset(baseAsset, address(this), msg.sender, baseBalance) in
_returnBase

Use _transferAsset(inputAsset, address(this), msg.sender, quoteBalance) in
_returnQuote

Lyra Comment
This has been resolved.

Sherlock Comment

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L486
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L468
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L545-L554
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L379-L382
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L315

Update: Sounds reasonable.

Note: Protocol team acknowledged this finding which was independently discovered
by them while testing on Kovan during the CASE period. It has been apparently fixed in
a recent commit post-CASE-start (see
https://github.com/lyra-finance/lyra-protocol/blob/0126776cc4061d66ed0400fce21d4
3e2eea172df/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L458
and
https://github.com/lyra-finance/lyra-protocol/blob/0126776cc4061d66ed0400fce21d4
3e2eea172df/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L476
).

https://github.com/lyra-finance/lyra-protocol/blob/0126776cc4061d66ed0400fce21d43e2eea172df/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L458
https://github.com/lyra-finance/lyra-protocol/blob/0126776cc4061d66ed0400fce21d43e2eea172df/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L458
https://github.com/lyra-finance/lyra-protocol/blob/0126776cc4061d66ed0400fce21d43e2eea172df/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L476
https://github.com/lyra-finance/lyra-protocol/blob/0126776cc4061d66ed0400fce21d43e2eea172df/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L476

Issue M-06

Event emitted with incorrect value

Summary
Event PositionUpdated is always emitted with a value of
PositionUpdatedType.ADJUSTED, which is incorrect for positions being opened.

Severity
Medium

Vulnerability Detail
The check for _positionId == 0 in the emission of event PositionUpdated will always
return false because _positionId is always updated to a non-zero value earlier.

This would cause the PositionUpdated event emission to always say
PositionUpdatedType.ADJUSTED and never PositionUpdatedType.OPENED.

Impact
Frontend or offchain monitoring tools could be affected because they would never see
new positions being opened but only positions being adjusted (even when they are
being newly opened). This could negatively impact UI & UX to cause confusion and
perhaps even a DoS vulnerability.

Code Snippet
PositionUpdated _positionId

Tool used
Manual review

Recommendation
Cache the _positionId value (to track a zero value for later event emission) or use a
separate local variable instead of updating the parameter itself.

Lyra Comment
This has been resolved.

Note the "newPosition" variable added

https://github.com/lyra-finance/lyra-protocol/blob/avalon/contracts/OptionToken.sol#L
283

Sherlock Comment
Fixes the issue sufficiently.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L257
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L179

Issue M-07

Interchanged function arguments

Summary
The positions of arguments totalPoolValue and exchangeParams.spotPrice in the
function call _getLiquidity are accidentally interchanged compared to what is expected
by the parameters of _getLiquidity.

Severity
Medium

Vulnerability Detail
The first two arguments of _getLiquidity within _getTokenPriceAndStale are
interchanged. Instead of:

_getLiquidity(exchangeParams.spotPrice, totalPoolValue,...)

it is incorrectly implemented as:

_getLiquidity(totalPoolValue, exchangeParams.spotPrice,...)

Impact
This will break the liquidityThresholdCrossed constraint in the circuit-breaker
_updateCBs and would cause a DoS with the protocol unable to make progress
because CBTimestamp check in _canProcess will always fail while processing
deposit/withdrawal queues. This would then require the guardian to take over and
process everything manually as clarified by the protocol team.

Code Snippet
Call: _getLiquidity(totalPoolValue, exchangeParams.spotPrice,...) Declaration:
_getLiquidity(exchangeParams.spotPrice, totalPoolValue,...)

Tool used
Manual review

Lyra Comment
This has been resolved.

https://github.com/lyra-finance/lyra-protocol/blob/avalon/contracts/LiquidityPool.sol#
L454

Sherlock Comment
Fixes the issue sufficiently.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L441-L447
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L810-L816

Issue M-08

Incorrect collateral transferred leads to loss of user funds

Summary
setCollateralWrapper transfers the entire collateral from the user instead of
transferring only the differential amount when there is already some previously
deposited collateral.

Severity
Medium

Vulnerability Detail
If setCollateralTo > currentPosition.collateral, then instead of transferring the
differential collateral (i.e. setCollateralTo - currentPosition.collateral) amount from the
user, setCollateralWrapper transfers the entire collateral amount of setCollateralTo
again from the user.

Impact
At a minimum, the user is surprised (could affect their protocol engagement) and the
transaction could revert if the user doesn't have the unexpected amount of collateral
funds. If transferred, it leads to the loss of the user's additional collateral to the
protocol wrapper, which may be claimed by the next user engaging with the wrapper
contract.

Code Snippet
setCollateralWrapper

Tool used
Manual review

Recommendation
Transfer only setCollateralTo - currentPosition.collateral instead of setCollateralTo.

Lyra Comment
This has been resolved.

https://github.com/lyra-finance/lyra-protocol/blob/avalon/contracts/LiquidityPool.sol#
L454

Sherlock Comment
Looks reasonable.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L221-L230

Issue M-09

CEI pattern violations and cross-function reentrancy

Summary
Checks-effects-interactions (CEI) pattern is violated in a few places. If there is a
reentrancy possibility in quoteToken or baseToken, an attacker could steal funds by
exploiting cross-function reentrancy.

An attacker could potentially split their OptionToken in the middle of a settleOptions
call. The attacker would be fully paid for the settleOptions call, and they would be
minted another OptionToken that can be settled for its full value minus one wei.
Attacks can be repeated to drain the contract.

Severity
Medium

Vulnerability Detail
Although there are individual nonReentrant guards on the settleOptions (within
ShortCollateral.sol) and split (within OptionToken.sol) functions, these functions exist
in different contracts, so an attacker might be able to call split in the middle of a
settleOptions call (e.g. perhaps _sendLongCallProceeds transfers control flow to the
position’s owner due to the implementation of quoteToken/baseToken). At the
beginning of each iteration of the main for loop in settleOptions, a memory copy of the
position is taken. An attacker can simply call split on this position after the memory
copy is taken, and this won’t affect the memory copy of position.amount. This will
create a new OptionToken that can also be settled later on, while the original
OptionToken will be burned at the end of the settleOptions call. A small detail here is
that the attacker can’t call split to create an OptionToken of equal value, but this
doesn’t prevent the attack, since the attacker can just subtract one wei which is
essentially the same value.

Impact
If there is a reentrancy possibility in quoteToken or baseToken, an attacker could steal
funds. This is a hypothetical risk at the moment because there are no actual control
flow transfers to the user in settleOptions despite the nonReentrant guard suggesting
there could be. However, Synthetix tokens are upgradable, and so it is not impossible
that quoteToken/baseToken are upgraded by Synthetix in the future and this issue
becomes exploitable.

Code Snippet:
reclaimInsolventQuote (CEI pattern violation) settleOptions (CEI pattern violation) split

Tool used

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L695-L701
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/ShortCollateral.sol#L166
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L417

Manual review

Recommendation
Ensure CEI pattern is not violated (even with nonReentrant) and cross-contract
reentrancies are considered in the threat model. In this case, settlePositions should
probably burn the OptionTokens before transferring anything.

Lyra Comment
The Synthetix contracts can be trusted to not upgrade into a system which would
allow this exploit. In the case of Synthetix being exploited, there are much simpler
avenues for extracting value out of the lyra contracts (or rather the entire SNX
ecosystem). In general, reentrancy checks aren’t necessary - however they have been
added just in case. As such, this has been resolved.

https://github.com/lyra-finance/lyra-protocol/pull/2/commits/6635f6005f68d46dfe60
b92e34f372851c536bfd

Sherlock Comment
Looks reasonable.

Issue L-01

Missing Zero-address Validation

Summary
Lack of zero-address validation on address parameters will lead to reverts and may
force contract redeployments in the protocol.

Severity
Low

Vulnerability Detail
Many functions externally accessible by users and owners lack zero-address
validation on address parameters. Accidentally using zero addresses will lead to
transaction reverts.

Impact
This will lead to transaction reverts, waste gas, require resubmission of transactions
and may even force contract redeployments in certain cases within the protocol.

Code Snippet
setLiquidityTracker setAddressResolver setPoolHedger LiquidityTokens.init
liquidatePosition

Tool used
Manual review

Recommendation
Add explicit zero-address validation on input parameters of address type.

Lyra Comment
Acknowledged, in the case of init() being called incorrectly a full redeploy will be done.

Sherlock Comment
Noted.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityTokens.sol#L50-L52
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L80-L84
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L205-L215
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityTokens.sol#L42-L44
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L737-L764

Issue L-02

Missing events

Summary
Critical functions do not emit events.

Severity
Low

Vulnerability Detail
Functions that are access-controlled (onlyOwner) or that change important protocol
addresses/parameters should emit events for off-chain tracking of such critical
changes to allow users to observe them and decide how/whether to continue
engaging with the protocol based on the observed changes.

While many administrative functions emit events, a few critical ones are missing the
emission of events.

Impact
External (off-chain) observers will not be able to easily monitor critical on-chain
changes to decide how/whether to continue engaging with the protocol. This leads to
reduced transparency.

Code Snippet
setLiquidityTracker setPartialCollateralParams setURI setLiquidityToken
addCurveStable removeCurveStable addMarket updateMarket

Tool used
Manual review

Recommendation
Add events to functions that change critical parameters.

Lyra Comment
Events have been added to the core contracts. Wrapper has not been updated yet.

Sherlock Comment
Logs are emitted for all core contract functions that are listed in the issue.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityTokens.sol#L50-L52
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L135-L144
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L149-L151
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/BasicLiquidityCounter.sol#L19
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L127-L139
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L141-L157
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L159-L180
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L21-L26

Issue L-03

Time-delayed change of critical parameters is absent

Summary
Change of critical parameters should be enforced only after a time delay.

Severity
Low

Vulnerability Detail
When critical parameters of systems need to be changed, it is required to broadcast
the change via event emission and recommended to enforce the changes after a
time-delay. This is to allow system users to be aware of such critical changes and give
them an opportunity to exit or adjust their engagement with the system accordingly.

None of the onlyOwner functions that change critical protocol addresses/parameters
have a timelock for a time-delayed change to alert: (1) users and give them a chance
to engage/exit protocol if they are not agreeable to the changes (2) team in case of
compromised owner(s) and give them a chance to perform incident response.

Impact
Users may be surprised when critical parameters are changed without notice.
Furthermore, it can erode users' trust since they can’t be sure the protocol rules won’t
be changed later on.

Compromised owner keys may be used to change protocol addresses/parameters to
benefit attackers. Without a time-delay, authorised owners have no time for any
planned incident response.

Code Snippet
setOptionMarketParams setLiquidityTracker setPartialCollateralParams setStrikeSkew
setLiquidityToken addCurveStable removeCurveStable addMarket updateMarket

Tool used
Manual review

Recommendation
All access-controlled functions that set/change critical addresses/parameters in these
contracts should apply a timelock. Consider evaluating the use of OpenZeppelin’s
TimelockController.

Lyra Comment

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L355-L361
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityTokens.sol#L50-L52
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L135-L144
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L397
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/BasicLiquidityCounter.sol#L19
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L127-L139
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L141-L157
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L159-L180
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L21-L26

“Yes this is in the plans for a future upgrade of the system. I imagine we'll be writing
new contracts to handle ownership and allow things like time delays and token holder
voting to veto updates to the contracts.”

Sherlock Comment
Noted

Issue L-04
Missing validation and events in init functions

Summary
None of the init functions perform zero-address validation on address parameters or
emit events.

Severity
Low

Vulnerability Detail
None of the init functions perform zero-address validation on address parameters or
emit events. They all however are onlyOwner callable and have the initializer modifier
(from SimpleInitializeable) so that they can be called only once.

Impact
Accidental use of incorrect parameters will require contract redeployment. Offchain
monitoring of calls to these critical functions is not possible.

Code Snippet
LiquidityPool LiquidityTokens OptionGreekCache OptionMarket OptionMarketPricer
OptionToken PoolHedger ShortCollateral

Tool used
Manual review

Recommendation
It is recommended to perform validation of input parameters and emit events.

Lyra Comment
The issue was acknowledged by the protocol team: “Very aware a mistake here means
a full redeployment.”

Sherlock Comment
Noted that the choice has been made not to fix.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L159-L178
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityTokens.sol#L42-L44
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L221-L229
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L170-L188
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L160-L163
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L120-L130
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/PoolHedger.sol#L68-L84
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/ShortCollateral.sol#L47-L63

Issue L-05

Missing validation of asset types

Summary
Lack of input validation in init of OptionMarket to check if the quote and base assets
are as expected by the protocol to be sUSD and Synthetix Synths.

Severity
Low

Vulnerability Detail
The protocol assumes that quote and base assets are sUSD and Synthetix Synths.
However, there are no checks to enforce that assumption.

Impact
Using any other asset types will break the protocol assumptions and its working.

Code Snippet
init

Tool used
Manual review

Recommendation
Add explicit validation to check that quote asset is sUSD and base asset is one of the
recognized Synthetix Synths from https://synthetix.io/synths.

Lyra Comment
This check is covered in deploy scripts.

Sherlock Comment
Noted, but no code reference provided.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L186-L187
https://synthetix.io/synths

Issue L-06

Missing sanity/threshold checks

Summary
Sanity/threshold checks (depending on their types) on input parameters are missing.

Severity
Low

Vulnerability Detail
Functions that update critical protocol parameters are missing sanity/threshold
validation on some parameters.

Examples include:

● Missing sanity/threshold check on maxBoardExpiry of optionMarketParams
● Missing sanity/threshold check on vegaFeeCoefficient in setPricingParams
● Missing sanity/threshold checks on all parameters set in setVarianceFeeParams
● Missing sanity/threshold checks on maxStrikesPerBoard in

setGreekCacheParameters
● Missing sanity/threshold checks on quoteKey, baseKey and trackingCode in

setGlobalsForContract.

Impact
Parameters may accidentally be initialized with invalid values in the context of the
protocol or in relation to other parameters. This may lead to incorrect accounting and
protocol malfunction.

Code Snippet
setOptionMarketParams setPricingParams setVarianceFeeParams
setGreekCacheParameters setGlobalsForContract

Tool used
Manual review

Recommendation
Add explicit sanity/threshold validation to check that input parameters fall within range
or have values as expected in the context of the protocol or in relation to other
parameters.

Lyra Comment
For the listed parameters, both 0 and high values are allowed. There’s no reasonable
cap as the values are dependent on what price the asset trades at.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L355-L361
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L174-L191
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L227-L231
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L235-L254
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L93-L108

In terms of `setGlobalsForContract`, the system won’t operate properly until those are
corrected. `trackingCode` can be set to zero too.

Sherlock Comment
Noted

Issue L-07

Missing equivalence checks in setters

Summary
Setter functions are missing checks to validate if the new value being set is the same
as the current value already set in the contract.

Severity
Low

Vulnerability Detail
Setter functions are missing checks to validate if the new value being set is the same
as the current value already set in the contract. Such checks will showcase
mismatches between on-chain and off-chain states.

Impact
This may hinder detecting discrepancies between on-chain and off-chain states
leading to flawed assumptions of on-chain state and protocol behavior.

Code Snippet
setBoardFrozen

Tool used
Manual review

Recommendation
Add equivalence checks to validate (and revert) if the new value being set is the same
as the current value already set in the contract.

Lyra Comment
Acknowledged. Since there is no significant downside besides a wasted transaction,
this will not be fixed due to contract size constraints.

Sherlock Comment
Noted

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L244-L256

Issue L-08

Board expiry is an open interval

Summary
Option board expiry is defined as “The timestamp when the board expires.” However,
the checks enforced on it treat it as an open interval.

Severity
Low

Vulnerability Detail
The checks enforced on option board expiry treat it as an open interval which
excludes the (low probability) case where expiry == block.timestamp which is neither
treated as expired in _doTrade nor treated as not-expired in settleExpiredBoard.

Impact
Undefined behavior

Code Snippet
expiry _doTrade settleExpiredBoard

Tool used
Manual review

Recommendation
Enforce board expiry as a closed interval to include the value of block.timestamp i.e.
board is considered expired (in _doTrade) when board.expiry <= block.timestamp
instead of board.expiry < block.timestamp.

Lyra Comment
This has been resolved. Boards are tradable up until the expiry, but not inclusive.
Boards can be settled on the same second as expiry.

https://github.com/lyra-finance/lyra-protocol/blob/avalon/contracts/OptionMarket.sol#
L1016

https://github.com/lyra-finance/lyra-protocol/blob/avalon/contracts/OptionMarket.sol#
L785

Sherlock Comment
The referenced commits fix the issue sufficiently.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L197
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L693-L695
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L920-L922

Issue L-09

Max values lesser than min values

Summary
MaxBaseIV, maxSkew and and maxVol may accidentally be set to values lower than
MinBaseIV, minSkew and minVol respectively.

Severity
Low

Vulnerability Detail
While setTradeLimitParams enforces threshold checks on max/min BaseIVs, max/min
Skews and maxVol separately, there is no check to ensure that max values are set
higher than min values.

Impact
Undefined behavior

Code Snippet
setTradeLimitParams

Tool used
Manual review

Recommendation
Add checks to ensure that max values are set higher than min values.

Lyra Comment
Acknowledged. Impact is zero as trading would just be blocked until parameters are
set back to valid ranges, so this will not be fixed.

Sherlock Comment
Noted. Would like to see the tests that confirm this behavior.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L204-L210

Issue L-10

SynthetixAdapter initialize may be front-run

Summary
SynthetixAdapter initialize is susceptible to being initialized by someone other than the
deployer.

Severity
Low

Vulnerability Detail
SynthetixAdapter initialize is meant to be used in a proxy setting which leads to a
typical front-running scenario where the deployed contract is susceptible to being
initialized by someone other than the deployer.

Impact
If an attacker manages to front-run and initialize, without being detected, then they
can make the protocol use malicious contracts masquerading to be those responsible
for Synthetix, Exchanger, Exchanger Rates, Collateral Shorts and Delegate Approvals
by setting addressResolver. They can also set arbitrary values for protocol globals or
pause/unpause markets at will.

Code Snippet
initialize

Tool used
Manual review

Recommendation
Front-running can be avoided by atomically deploying and initializing from a proxy or a
deploy script.

Lyra Comment
Acknowledged. A frontrun would be detected by deploy scripts, leading to
redeploying.

Sherlock Comment
Noted.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L67-L69

Issue L-11

Missing valid option market check in setMarketPaused

Summary
setMarketPaused cannot check if the contract address parameter is indeed a valid
option market contract address, in the context of the protocol, to which _isPaused is
being applied.

Severity
Low

Vulnerability Detail
Given the absence of a global view of all valid option market contracts created,
setMarketPaused has no way to check if the contract address parameter is indeed a
valid option market contract address in the context of the protocol. If an incorrect
address is accidentally used, setMarketPaused applies the _isPaused boolean to that
address while the option market expected to be paused/unpaused is unaffected. This
can only be detected offchain and setMarketPaused may need to be executed again
during any critical incident response scenario.

Impact
An incorrect address that is not a valid option market contract address, in the context
of the protocol, may be paused/unpaused while the actual intended option market
remains unaffected. This could affect any critical incident response scenario and, if
detected, will require setMarketPaused to be executed again, which could affect the
timeliness of response.

Code Snippet
setMarketPaused

Tool used
Manual review

Recommendation
Consider creating a global view of all option markets so that the system can check if
they exist and are valid.

Lyra Comment
Acknowledged. “[...] if detected, will require setMarketPaused to be executed again”
this would still be the case even with a fix. Impact is minimal so will not be fixed.

Sherlock Comment
The difference is that the suggested fix will detect and revert deterministically to
suggest a re-execution. The current implementation may fail silently, requiring an

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L115-L118

alternative way, which may or may not be in place, to detect failed pausing/unpausing
of target market.

Also, pausing is an emergency circuit-breaker mechanism used during high-impact
scenarios where time to incident respond is less and valuable. So would contest the
"impact is minimal" response.

Issue L-12

Event Spamming may grief system

Summary
The public visibility of updateSynthetixAddresses allows griefing and confusing
protocol operations via event spamming.

Severity
Low

Vulnerability Detail
Function updateSynthetixAddresses is called by setAddressResolver when the owner
changes addressResolver to cache Synthetix addresses. While
updateSynthetixAddresses sets the Synthetix addresses used by protocol via
addressResolver (that can only be set by owner), it has public visibility and emits an
event SynthetixAddressesUpdated.

Impact
The emission of an event in a public function allows griefing the system via event
spamming, which could confuse/overwhelm off-chain monitoring tools about
addresses being updated when they are actually not i.e. when addressResolver has
not changed or Synthetix addresses themselves have not changed.

Code Snippet
updateSynthetixAddresses setAddressResolver

Tool used
Manual review

Recommendation
Consider changing updateSynthetixAddresses visibility to private, adding onlyOwner
modifier or checking for changed addresses before modifying state and emitting an
event.

Lyra Comment
The idea of the function being public is that there is less trust placed into the owner.
Events being spammed is not a concern, so this has not been fixed.

Sherlock Comment
Noted.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L132-L140
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L80-L84

Issue L-13

Inconsistency of access control models

Summary
The protocol uses two models of contract owner access control: OpenZeppelin's
Ownable and Synthetix's Owned, which have some differences in capabilities.

Severity
Low

Vulnerability Detail
Contracts in /periphery/Wrapper use OpenZeppelin's Ownable access control model,
while the main contracts use Synthetix's Owned access control model. OpenZeppelin's
Ownable model allows ownership change in a single step which is dangerous and
should be avoided. Synthetix's Owned model uses a 2-step nominateNewOwner and
acceptOwnership, which is recommended to avoid accidental ownership transfers to
incorrect addresses.

Impact
The two different models of ownership access control may make operations more
complicated while changing owners. Wrapper contracts using OpenZeppelin's
Ownable access control are susceptible to accidental ownership transfers to incorrect
addresses because of single-step change.

Code Snippet
Ownable: BasicOptionMarketWrapper and others

Owned: OptionMarketWrapperWithSwaps

Tool used
Manual review

Recommendation
It is recommended to use only one access control model to avoid complicated security
operations. Use Synthetix's Owned model everywhere given its support of 2-step
nominateNewOwner and acceptOwnership change process.

Lyra Comment
Fixed, only the Synthetix Owned model is used across all contracts now.

Sherlock Comment

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L10
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L20

All but LyraAdapter
https://github.com/lyra-finance/lyra-protocol/blob/6635f6005f68d46dfe60b92e34f37
2851c536bfd/contracts/periphery/LyraAdapter.sol#L32?

Issue L-14

Uninitialized OptionBoard is allowed to be used

Summary
When an option board is created for the first time, id is set to 1 by the OptionMarket
contract and id 0 is skipped. For every consequent board, an incremental id is set
based on the nextBoardId. Option boards are stored in optionBoards which maps ids
to instances of the OptionBoard struct. Throughout the codebase option board ids are
checked for their validity by comparing OptionBoard.id with the id provided by the
user, which is used to retrieve the OptionBoard struct from the mapping. This check is
insufficient for board id 0 because, by default, it is uninitialized and therefore the
OptionBoard.id is 0, so the check can be bypassed, and the board is valid.

Severity
Low

Vulnerability Detail
In OptionMarket.sol, there are a variety of places with the following logic:

if (board.id != boardId) {revert InvalidBoardId(address(this), boardId);}

Not rejecting board id 0 may lead to undefined behavior, for example, it is possible to
call setBoardFrozen on boardId 0, and the transaction will not revert (even though 0 is
not an actual boardId).

Impact
Undefined behavior

Code Snippet
setBoardFrozen setBoardBaseIv addStrikeToBoard forceSettleBoard
settleExpiredBoard

Tool used
Manual review

Recommendation
Set nextBoardId to 0 instead of 1 at contract creation, or add an explicit check to make
sure boardId 0 is considered invalid and rejected in all the functions listed in the Code
Snippet section.

Lyra Comment
Has been resolved by checking the boardId passed in.

Sherlock Comment

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L249-L256
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L263-L278
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L311-L320
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L344-L353
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L915-L924

Looks reasonable.

Issue L-15

Missing return value checks on asset transfers

Summary
Token transfers of quote and base assets are missing return value checks in several
places.

Severity
Low

Vulnerability Detail
The quote asset in Lyra is always specified to be sUSD while base assets are limited to
synths specified by Synthetix at https://synthetix.io/synths. Transfers of these assets
within the protocol are checked for return values to revert with QuoteTransferFailed
and BaseTransferFailed errors upon failure.

The protocol team clarified that return value checks exist as a defensive programming
feature if Synth token contracts (which revert now on failed transfers) were ever
upgraded in the future to return success/failure instead of reverting.

However, some asset transfers are missing this return value check.

Impact
If synth token contracts were ever upgraded in the future to return success/failure,
then failed transfers would not be detected.

Code Snippet
smClaim reclaimInsolventBase _takeExtraCollateral _returnExcessFunds swap
openPosition closePosition forceClosePosition _takeExtraCollateral
setCollateralWrapper _openPosition _closePosition _returnBase

Tool used
Manual review

Recommendation
To be consistent, check for return values and revert with QuoteTransferFailed and
BaseTransferFailed errors upon failure.

Lyra Comment
This has been fixed in most places. All core contracts should be fixed.

Sherlock Comment
All core contracts are fixed. Periphery contracts are pending a fix.

https://synthetix.io/synths
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L368-L375
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L720
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L100-L102
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L111-L115
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/MultistepSwapper.sol#L67-L98
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L28-L46
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L48-L68
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L70-L90
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L92-L106
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L212-L256
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L267-L320
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L328-L386
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L479-L492

Issue L-16

Unsafe Casting of uint to int & int to uint

Summary
Explicit casting of uint to int and int to uint is generally unsafe and there are several
instances where such type conversions are implemented.

Severity
Low

Vulnerability Detail
Explicit casting of uint to int and int to uint is unsafe when downcast uint values are
outside the range of int and when negative int values are cast to uint, because Solidity
does not enforce implicit bounds checks on such explicit casting.

Impact
This could lead to incorrect accounting of such values in the protocol.

Code Snippet
_updateExposure _getTotalPoolValueQuote updateStrikeExposureAndGetPrice
_updateStrikeExposureAndGetPrice _updateStrikeCachedGreeks _getParity
getVarianceFee getCurrentHedgedNetDelta _hedgeDelta updatePosition
getCappedExpectedHedge, others in BlackScholes.sol and GWAV.sol libraries.

Tool used
Manual review

Recommendation
Use SafeCast.toInt256 and SafeCast.toUint256 consistently to prevent unsafe casts.

Lyra Comment
This has been resolved across all core contracts, besides maths libraries as the logic
there should prevent those cases - and would have a huge impact on gas cost of
common operations.

Sherlock Comment
All core contracts are fixed except BlackScholes and GWAV

There is one unfixed cast:
https://github.com/lyra-finance/lyra-protocol/blob/6635f6005f68d46dfe60b92e34f37
2851c536bfd/contracts/ShortPoolHedger.sol#L442

Confirmed this one is missing.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L879-L904
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L798
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L455-L456
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L495
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L787
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionGreekCache.sol#L1059-L1060
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L552
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/PoolHedger.sol#L175-L178
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/PoolHedger.sol#L271
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/PoolHedger.sol#L310-L316
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/PoolHedger.sol#L435-L442
https://github.com/lyra-finance/lyra-protocol/blob/6635f6005f68d46dfe60b92e34f372851c536bfd/contracts/ShortPoolHedger.sol#L442
https://github.com/lyra-finance/lyra-protocol/blob/6635f6005f68d46dfe60b92e34f372851c536bfd/contracts/ShortPoolHedger.sol#L442

Issue L-17

removeMarket incorrectly removes first market

Summary
Function removeMarket incorrectly removes the first market if called with a
non-existing market identifier.

Severity
Low

Vulnerability Detail
If removeMarket is accidentally called with a non-existing market identifier, then it fails
to detect that and instead removes marketIds[0] and marketContracts[0]because the
index continues to be 0 in the implementation.

Impact
An incorrect market is removed, which will cause DoS for that market’s trading
thereafter.

Code Snippet
removeMarket

Tool used
Manual review

Recommendation
Implement logic similar to removeCurveStable where the function reverts if the
provided market identifier is not found.

Lyra Comment
Has been fixed.

Sherlock Comment
Fixed sufficiently.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L182-L191
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L141-L157

Issue L-18

Incorrect operator * used instead of /

Summary
SignedDecimalMath.divideDecimal incorrectly returns (x * UNIT) * y instead of
returning (x * UNIT) / y.

Severity
Low

Vulnerability Detail
SignedDecimalMath appears to have been updated from the corresponding Synthetix
version to remove SafeMath in favor of using Solidity’s 0.8+ compiler’s built-in bound
checks (Library @dev comment: “Modified synthetix SafeDecimalMath to include
internal arithmetic underflow/overflow”). While doing so, there appears to have been a
typographical error introduced in divideDecimal which returns (x * UNIT) * y instead of
(x * UNIT) / y.

Impact
While none of Lyra’s contracts currently use this function (they use the equivalent
function for uint) and therefore are not immediately impacted (hence the Low
severity), this needs to be fixed for any potential future/other uses, given that this is a
library.

Code Snippet
divideDecimal Synthetix version

Tool used
Manual review

Recommendation
SignedDecimalMath.divideDecimal should return (x * UNIT) / y.

Lyra Comment
Has been fixed.

Sherlock Comment
Is fixed in the reviewed version
https://github.com/lyra-finance/lyra-protocol/blob/6635f6005f68d46dfe60b92e34f37
2851c536bfd/contracts/synthetix/SignedDecimalMath.sol#L150-L153

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/synthetix/SignedDecimalMath.sol#L142
https://github.com/Synthetixio/synthetix/blob/c9f6ac8b9d90dfdbf9b03e8a690edfe7e97fe15a/contracts/SignedSafeDecimalMath.sol#L131

Issue L-19

Incorrect implementation of SignedDecimalMath functions

Summary
The implementations of _divideDecimalRound, _multiplyDecimalRound and
preciseDecimalToDecimal in SignedDecimalMath miss decrementing resultTimesTen
and quotientTimesTen values.

Severity
Low

Vulnerability Detail
SignedDecimalMath functions_divideDecimalRound, _multiplyDecimalRound and
preciseDecimalToDecimal miss decrementing resultTimesTen and quotientTimesTen
values by 10 when those values % 10 <= -5.

There appear to be copy-paste errors from DecimalMath for negative integers.

Impact
None of Lyra’s contracts currently use _divideDecimalRound function (they use the
equivalent function for uint, which ultimately gets used in functions of
SynthetixAdapter contract and BlackScholes library) and therefore are not immediately
impacted.

Lyra’s contracts currently use SignedDecimalMath _multiplyDecimalRound, which is
called by multiplyDecimalRoundPrecise, which in turn is called by functions in
BlackScholes library. Lyra’s contracts also currently use SignedDecimalMath
preciseDecimalToDecimal, which is called by functions in BlackScholes library. These
functions need to be fixed for current and any potential future/other uses, given that
this is a library. Current usages may lead to incorrect accounting values for negative
integers, which could impact the economic security aspects of the protocol.

Code Snippet
_divideDecimalRound Synthetix version: _divideDecimalRound & _roundDividingByTen

_multiplyDecimalRound Synthetix version: _multiplyDecimalRound &
_roundDividingByTen

preciseDecimalToDecimal Synthetix version: preciseDecimalToDecimal &
_roundDividingByTen

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/synthetix/SignedDecimalMath.sol#L153-L165
https://github.com/Synthetixio/synthetix/blob/c9f6ac8b9d90dfdbf9b03e8a690edfe7e97fe15a/contracts/SignedSafeDecimalMath.sol#L142-L149
https://github.com/Synthetixio/synthetix/blob/c9f6ac8b9d90dfdbf9b03e8a690edfe7e97fe15a/contracts/SignedSafeDecimalMath.sol#L42-L50
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/synthetix/SignedDecimalMath.sol#L84-L97
https://github.com/Synthetixio/synthetix/blob/c9f6ac8b9d90dfdbf9b03e8a690edfe7e97fe15a/contracts/SignedSafeDecimalMath.sol#L78-L86
https://github.com/Synthetixio/synthetix/blob/c9f6ac8b9d90dfdbf9b03e8a690edfe7e97fe15a/contracts/SignedSafeDecimalMath.sol#L42-L50
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/synthetix/SignedDecimalMath.sol#L201-L209
https://github.com/Synthetixio/synthetix/blob/c9f6ac8b9d90dfdbf9b03e8a690edfe7e97fe15a/contracts/SignedSafeDecimalMath.sol#L185-L188
https://github.com/Synthetixio/synthetix/blob/c9f6ac8b9d90dfdbf9b03e8a690edfe7e97fe15a/contracts/SignedSafeDecimalMath.sol#L42-L50

Tool used
Manual review

Recommendation
Make implementations consistent with Synthetix.

Lyra Comment
Has been fixed.

Sherlock Comment
Is fixed in the reviewed version.

Issue L-20

Users can add collateral and split/merge positions when
markets/protocol is paused

Summary
Paused markets/protocol do not prevent users from interacting with the protocol when
collateral is added or non-short positions are split or merged.

Severity
Low

Vulnerability Detail
Interaction with paused markets/protocol is prevented by enforcing the notPaused
modifier on two SynthetixAdapter functions: getSpotPriceForMarket and
getExchangeParams. However, this does not prevent users from calling addCollateral
or split/merge non-short positions (under certain conditions) even when paused
because those flows do not call either of the two functions that enforce the notPaused
modifier.

Impact
Depending on the reasons behind pausing the market/protocol, allowing users to
bypass the pause by adding collateral to their positions or split/merge non-short
positions (under certain conditions) could affect recovery from the incident that led to
the pausing.

Code Snippet
getSpotPriceForMarket getExchangeParams addCollateral

Tool used
Manual review

Recommendation
Evaluate addCollateral, user split/merge ​​of non-short positions and all user flows that
modify protocol state to make sure they can be paused when needed. Consider the
global pause as an overall pausing mechanism for all protocol state-modifying flows
and the market-specific pause for a subset of those flows. Specify and document
exactly which flows need to be paused, by which of the two pausing mechanisms and
under what conditions.

Lyra Comment
Has been fixed by adding `notGlobalPaused` modifier to several contracts.

Sherlock Comment

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L150
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L174-L178
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L466-L470

Looks reasonable.

Issue L-21
Void constructor

Summary
Calls to base contract constructors that are unimplemented lead to misplaced
assumptions.

Severity
Low

Vulnerability Detail
The constructor of OptionToken calls the constructor of ERC721Enumerable which is
not implemented. This could lead to misplaced assumptions if the unimplemented
constructor were expected to initialize any state.

Impact
Reduced readability and auditability.

Code Snippet:
OptionToken ERC721Enumerable

Tool used
Slither

Recommendation
Remove the call to the unimplemented base constructor.

Lyra Comment
Call to unimplemented constructor has been removed.

Sherlock Comment
Fixed in the reviewed version.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L114
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/c2077f003403a22a6815d95730555a2c108a3bbd/contracts/token/ERC721/extensions/ERC721Enumerable.sol#L14-L163
https://github.com/crytic/slither/wiki/Detector-Documentation#void-constructor

Issue L-22

Event emitted prematurely

Summary
The event PositionUpdated is emitted prematurely before token transfer.

Severity
Low

Vulnerability Detail
The event PositionUpdated is emitted in _beforeTokenTransfer notifying that the
option token has been transferred to the new owner indicated by the to address.
However, the token transfer technically has not happened yet and is not the owner
until that happens.

Impact
This could confuse off-chain monitoring tools.

Code Snippet
_beforeTokenTransfer PositionUpdated

Tool used
Manual review

Recommendation
Move event PositionUpdated from _beforeTokenTransfer to _afterTokenTransfer.

Lyra Comment
Acknowledged. However, as there is no _afterTokenTransfer in the ERC721
implementation to overwrite, the event will remain in the _beforeTokenTransfer event.

Sherlock Comment
There is _afterTokenTransfer in ERC721.sol:
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/450c569d78aa57e8e7
3547f99ec412409c73d852/contracts/token/ERC721/ERC721.sol#L438-L453

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L636-L646
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L655-L661

Issue L-23

Max/Infinite approvals are dangerous

Summary
Giving max/infinite approvals to contracts is dangerous.

Severity
Low

Vulnerability Detail
Giving max/infinite approvals to contracts is dangerous because if those contracts are
ever exploited then they can remove all the funds from the approving addresses.

Impact
Loss of funds if approved contracts are exploited.

Code Snippet
updateMarket

Tool used
Manual review

Recommendation
Short-term, check allowance and approve only as much as required during each
transaction flow. Long-term, design with zero-trust boundaries between components
of the system so that even if some get compromised others can function.

Lyra Comment
Acknowledged. However, as the wrapper should never hold any funds, these max
approvals are not considered a risk.

Sherlock Comment
Noted.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L24-L25

Issue L-24

Remove private keys from deployment scripts

Summary
There are two locations in the deployment scripts that have hard-coded private keys.

Severity
Low

Vulnerability Detail
Private keys are present in the deployment scripts: deployAndSeedLocal.ts and
kovanInteraction.ts. None of the keys contain significant amounts of ETH or other
tokens.

Impact
Deployment key leakage can have devastating effects if not noticed early before users
are onboarded.

Code Snippet
deployAndSeedLocal.ts kovanInteraction.ts

Tool used
Manual Review

Recommendation
Accidental private key leakage is a serious problem. It is recommended to change the
deployment script so that they retrieve the private keys from environment variables for
example. Precautions should be taken so that private key leakage does not occur.

Lyra Comment
This private key is the default hardhat private key, and well known. Not a concern.

These scripts are not used for deployment; they are example scripts for integrators -
not to be used in production. Deployments use private keys stored in .env files that are
not pushed to github.

Sherlock Comment
Noted.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/examples/deployAndSeedLocal.ts#L14
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/examples/kovanInteraction.ts#L13.
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/examples/deployAndSeedLocal.ts#L14
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/examples/kovanInteraction.ts#L13.

Issue I-01

Inconsistent use of positionId

Summary
closePosition uses params.positionId instead of result.positionId in
optionToken.transferFrom which is inconsistent.

Severity
Informational

Vulnerability Detail
While transferring the optionToken back to msg.sender, instead of using positionId
returned from optionMarket.closePosition, BasicOptionMarketWrapper.closePosition
uses the user provided parameter params.positionId. While the positionId in result
should not be different for closePosition (unlike openPosition), unless any underlying
logic changes, it is better to use result.positionId for consistency.

The same pattern exists in BasicOptionMarketWrapper.forceClosePosition.

Impact
Reduced readability, auditability and maintainability.

Code Snippet
closePosition forceClosePosition

Tool used
Manual review

Recommendation
Use result.positionId instead of params.positionId in optionToken.transferFrom.

Lyra Comment
This has been fixed.

Sherlock Comment
closePosition appears fixed but not forceClosePosition:
https://github.com/lyra-finance/lyra-protocol/blob/6635f6005f68d46dfe60b92e34f37
2851c536bfd/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L66

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L66
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/BasicOptionMarketWrapper.sol#L88

Issue I-02

Unused event declarations

Summary
Unused events may be indicative of unused code or of missed emit/logic.

Severity
Informational

Vulnerability Detail
Events TradingCutoffSet, QuoteKeySet and BaseKeySet are missing emits. This is
potentially indicative of missing setters.

Impact
Events that are declared but not used may be indicative of unused declarations
leading to reduced readability/maintainability/auditability, or worse, indicative of a
missing emit which is bad for monitoring or missing logic that would have emitted that
event.

Code Snippet
TradingCutoffSet QuoteKeySet BaseKeySet

Tool used
Manual review

Recommendation
Remove event declarations or add missing setters that will emit these events.

Lyra Comment
These events have been removed.

Sherlock Comment
Fixed in the reviewed version.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L389-L392
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L393-L396
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/SynthetixAdapter.sol#L397-L400

Issue I-03

Code, comments & documentation

Summary
Discrepancies in/between or inaccuracies/deficiencies in code, comment and
documentation can be misleading and could indicate the presence of inaccurate
implementation or documentation.

Severity
Informational

Vulnerability Detail
● Missing detailed specifications and documentation for all contracts. The current

documentation has been created for the previous version of the protocol and
not the Avalon version being reviewed. This forces reviewers to make
assumptions about the functionalities implemented and their intended
behaviors.

● Missing documentation of access control specifically about the different
privileged roles in the protocol (different owners) and their multisig
configuration, status, etc.

● Typo: NatSpec for param strikePrice should say “Price of the Strike”
● Typo: NatSpec for burn function should say “Burns” not “Mints”
● Stale comment “2 eth + 0.2 eth” in getLiquidationFees

Impact
Reduced code comprehension, auditability and maintainability.

Code Snippet
strikePrice burn getLiquidationFees

Tool used
Manual review

Recommendation
Code, comments and documentation should all be complete, accurate and consistent
before security review.

Lyra Comment
Recommendations have been resolved, along with more cleanup of comments overall.

Sherlock Comment
Nit: burn says "Burn new tokens and transfers them to `owner`" which is incorrect.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L308
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityTokens.sol#L66
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionToken.sol#L383

Issue I-04

Missing or Incomplete NatSpec

Summary
Some functions are missing @notice/@dev NatSpec comments for the function,
@param for all/some of their parameters and @return for return values.

Severity
Informational

Vulnerability Detail
Given that NatSpec is an important part of code documentation, missing NatSpec
comments affects code comprehension, auditability and usability.

Impact
Reduced code comprehension, auditability and usability.

Code Snippet
Examples of functions missing NatSpec: forceSettleBoard setOptionMarketParams
smClaim openPosition addCollateral getStrikeAndExpiry

Examples of functions with incomplete NatSpec: _doTrade
updateCacheAndGetTradeResult updateContractParams

Tool used
Manual review

Recommendation
Add full NatSpec for all functions.

Lyra Comment
All public facing external functions have been documented properly.

Sherlock Comment
Noted without verifying.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L344
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L355
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L363
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L451
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L466
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L397
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L660-L673
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L237-L249
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/periphery/Wrapper/OptionMarketWrapperWithSwaps.sol#L99-L109

Issue I-05

Unused or inconsistently used named returns

Summary
Functions use a mix of explicit returns and named return variables.

Severity
Informational

Vulnerability Detail
Functions use a mix of explicit returns and named return variables. Some named
returns are declared but unused with functions favoring explicit returns. This affects
readability.

Impact
Reduced code comprehension and auditability.

Code Snippet
numLiveBoards strikePrice getSettlementParameters timeWeightedFee minVal maxVal

Tool used
Manual review

Recommendation
Consistently use explicit returns or named returns. Remove unused named returns.
Favor explicit returns over implicit named returns.

Lyra Comment
Using named returns gives more information to integrators using the platform. As such
a combination of named returns with explicit returns has been used as the standard
across the contracts.

Sherlock Comment
Noted.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L393-L395
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L397-L399
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L1021-L1035
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L470-L482
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L596-L598
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarketPricer.sol#L600-L602

Issue I-06

Inconsistent naming convention

Summary
Function naming convention is inconsistent in a few places.

Severity
Informational

Vulnerability Detail
One of the naming conventions is for internal functions to start with an underscore.
While this is followed in many places, there are some functions where this is missing.

Impact
Reduced readability and auditability.

Code Snippet
sendAllQuoteToLP

Tool used
Manual review

Recommendation
Use the naming convention of starting with an underscore for internal functions
consistently.

Lyra Comment
All internal functions have been fixed to begin with an underscore.

Sherlock Comment
Noted without verifying.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/PoolHedger.sol#L451

Issue I-07

Code structure deviates from best-practice

Summary
It is a best practice to order different contract constructs in a certain widely-used
layout for better readability and auditability.

Severity
Informational

Vulnerability Detail
The best-practice layout for a contract should follow the following order: state
variables, events, modifiers, constructor and functions.

Function ordering helps readers identify which functions they can call and find
constructor and fallback functions easier. Functions should be grouped according to
their visibility and ordered as: constructor, receive function (if exists), fallback function
(if exists), external, public, internal, private.

Some constructs deviate from this recommended best-practice: Modifiers, events and
errors are at the end of contracts. External/public functions are mixed with
internal/private ones.

Impact
Reduced readability, auditability and maintainability.

Code Snippet
TradeIterationsHasRemainder Modifiers Events and Errors

Tool used
Manual review

Recommendation
Consider adopting recommended best-practice for code structure and layout.

Lyra Comment
In general readability has been a focus of the contracts. Each contract has been split
into sections where they can be read from top to bottom to follow code logically.
Structs and variables are defined at the top of each file, Errors and Events at the
bottom.

Sherlock Comment
Noted.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L725-L731
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/LiquidityPool.sol#L960-L983
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L1051-L1147

Issue I-08

Potential gas optimizations

Summary
There are many opportunities to optimize gas usage.

Severity
Informational

Vulnerability Detail
There are various categories of gas optimizations possible across contracts such as:

● Caching of variables in memory instead of reusing storage variables or
repeated external calls

● Use of locals/parameters in event emissions instead of their equivalent storage
variables

● Avoiding initialisations of loop indices to their default values
● Using unchecked blocks to save more gas on overflow/underflow safe

arithmetic operation
● Skipping initializations of variables whose initial values are expected to be the

same as default values of their types

Impact
While launching on a Layer-2 (Optimism) implies lesser impact from increased gas
usage, the impact is still non-zero and may add up or increase over time.

Code Snippet
Examples

● Caching: quoteAsset
● Event: optionMarketParams
● Loop: createOptionBoard
● unchecked: GWAV
● Initialization: baseInsolventAmount

Tool used
Manual review

Recommendation
Consider optimizing for gas where possible.

Lyra Comment

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L367-L370
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L360
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/OptionMarket.sol#L235
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/lib/GWAV.sol#L91
https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/ShortCollateral.sol#L169

Acknowledged. Some have been fixed, however as the protocol is run on optimism,
readability is more important than minor gas savings.

Sherlock Comment
Noted without verifying.

Issue I-09
Several contracts are stubbed with test helpers

Summary
The SynthetixAdapter contract uses addressResolver which is used to map strings to
addresses. This is a helper function that links calls to the right Synthetix contracts.
The Resolver that is currently used is a test contract TestAddressResolver.

Severity
Informational

Vulnerability Detail
N/A

Impact
Forgetting to update the deployment script could lead to faulty deployment.

Code Snippet
TestAddressResolver.sol

Tool used
Manual Review

Recommendation
Make sure that the production deployment links to the correct Synthetix contracts.

Lyra Comment
There are full integration tests that run against the synthetix contracts in the local
environment. On mainnet the contracts will be linked to the real synthetix contracts.

Sherlock Comment
Noted.

https://github.com/lyra-finance/lyra-protocol/blob/0c2b2abee88ff5920721fa9848f831da01710392/contracts/test-helpers/TestAddressResolver.sol#L1-L19

